. . "201800304" . "NHR_004" . "7"^^ . "196"^^ . "10"^^ . "2023-07-06T22:00:00Z"^^ . "f2f" . "hybrid" . "Students will be encouraged to find creative solutions in the use of models, data, and concepts taught as well as state-of-the-art literature and consultation of in-house experts. Introductory lectures are given by teachers that give an overview of the particular topic and guide students with respect to main methods and techniques. For most of the topics treated, an accompanying GIS exercise is offered, in which students can apply what was taught. The exercises contain also advanced sections, where students are further challenged to come up with new solutions. Answer sheets are provided for each of the exercises. Most of the exercises relate to RiskCity, a (partly) hypothetical case study city in a developing country that is exposed to multiple hazards (earthquakes, floods, landslides, technological hazards). Several larger case studies are included where students work in small groups on a particular problem in a real case study related to risk assessment. Students build up a portfolio of assignments. \n\nThe teaching approach contains:\n\n1 - Keynote lectures to introduce key concepts and principles\n\n2 - Supervised practicals to bring the knowledge into practice using a range of tools\n\n3 - Tutorials for personalized and plenary feedback and to explore more independently the use of knowledge and tools\n\n4 - Project work, either individual or group projects"@en . . . . . . "Compulsory for the ‘Natural Hazards and Disaster Risk Reduction’ (NHR) specialization of the ‘Geo-information Science and Earth Observation (M-GEO) programme.\nStudents from other specializations and programmes should have introductory level experience with GIS and Remote Sensing, and a background in earth sciences, geography, environmental science or civil engineering."@en . . . . . . . . . "9"^^ . "4" . "2B" . "2023-04-23T22:00:00Z"^^ . "The knowledge of hazardous processes and the ability to predict their occurrence in terms of intensity and frequency and their interaction are important requirements to quantify their impact on society. This module focuses on the analysis of the risk, its evaluation, and its use in decision making for different disaster management phases.\n\nThe assessment of risk is a very multi-disciplinary field, that requires knowledge on hazards (types, frequency, intensity, modeling methods), elements-at-risk (types, classification, data collection, quantification), vulnerabilities (physical, social, environmental, institutional), capacities (to predict, cope, and recover) and resilience. Risk could be expressed as qualitative classes, risk matrices, or quantified as expected losses (e.g. monetary values, population). \n\nQualitative and/or quantitative risk assessment is used as a basis for different types of decision-making by various stakeholders, with different objectives: evaluating different risk reduction planning alternatives; link meteorological forecasts with loss estimation in impact-based forecasting; analyze post-disaster reconstruction alternatives in order to “build-back-better”, and increase the resilience. From the perspective of a continuously changing world, driving forces such as climate change, socio-economic development, population growth, and land-use change will put pressure on society, and require that risk is analyzed for future scenarios in order to plan wisely."@en . "Disaster Risk Management"@en . . "Hazard and Risk Studio/Disaster Risk Management"@en . "Disaster Risk Management"@en . . . "Learning outcome"@en . . "Develop a deeper understanding of the risk components (hazard, exposure, vulnerability, capacity, and resilience), and the way these are combined for different types of risk."@en . "Develop a deeper understanding of the risk components (hazard, exposure, vulnerability, capacity, and resilience), and the way these are combined for different types of ri