. . . . . . . "Assess the data processing accuracy and the quality of the generated products "@en . . . . . . . "Explain and compare remote sensing based 3D geoinformation data acquisition and processing "@en . . . . . . . "Compare and integrate the generated products from different platforms for engineering applications"@en . . . . . . . "Apply fundamental data processing pipeline for 3D geoinformation generation from airborne data"@en . . . . . . . . . . . . . "Intro"@en . "3D Geoinformation Engineering: LU1"@en . . . . . . . . . . . . . "Terrestrial active solutions"@en . "3D Geoinformation Engineering: LU6"@en . . . . . . . . . . . . . . . "Spaceborne passive solutions"@en . "3D Geoinformation Engineering: LU3"@en . . . . . . . . . . . "Terrestrial passive solutions"@en . "3D Geoinformation Engineering: LU7"@en . . . . . "Assessment"@en . "3D Geoinformation Engineering: LU10"@en . . . . . . . . . . . . "Airborne passive solutions"@en . "3D Geoinformation Engineering: LU5"@en . . . . . . . . . "Assessment"@en . "3D Geoinformation Engineering: LU9"@en . . . . . . . . . . . "Integration solutions"@en . "3D Geoinformation Engineering: LU8"@en . . . . . . . . . . . . "Airborne active solutions"@en . "3D Geoinformation Engineering: LU4"@en . . . . . . . . . . . . "Spaceborne active solutions"@en . "3D Geoinformation Engineering: LU2"@en . . . . . "engineering and urban planning applications"@en . . . . . . "airborne LiDAR systems"@en . . . . . . "3D data acquisition"@en . . . . . . "spaceborne passive sensors"@en . . . . . . "airborne data"@en . . . . . . "satellite imagery"@en . . . . . . "spaceborne passive solutions"@en . . . "https://ltb.itc.utwente.nl/page/792/concept/152732" . . "Remote sensing"@en . . . . . . . . . . . . . . . . . . . . . "data processing pipeline"@en . . . . . . "terrestrial data sources integration"@en . . . . . . "TLS"@en . . . . . . "spaceborne passive sensors applications"@en . . . . . . "passive terrestrial"@en . . . . . . "airborne active solutions"@en . . . . . . "3D geoinformation data acquisition"@en . . . . . . "terrestrial active sensors applications"@en . . . . . . "close-range photogrammetry techniques"@en . . . . . . "3D geoinformation data processing"@en . . . . . . "3D data processing techniques"@en . . . . . . "spaceborne passive sensors examples"@en . . . . . . "3D data collection"@en . . . . . . . "data processing"@en . . . . . . "data quality assessment"@en . . . . . . . . . "quality"@en . . . . . . "3D data processing methods"@en . . . . . . "airborne passive sensors applications"@en . . . . . . "generated products integration"@en . . . . . . "active terrestrial"@en . . . . . . "aerial data sources integration"@en . . . . . . "ground-based LiDAR systems"@en . . . . . . "terrestrial active solutions"@en . . . . . . . . "application"@en . . . . . . . . "3D geinformation innovations"@en . . . . . . "passive airborne"@en . . . . . . "data processing accuracy"@en . . . . . . "active spaceborne"@en . . . . . . "3D data collection methods"@en . . . . . . "3D models"@en . . . . . . "airborne passive data"@en . . . . . . "3D geinformation future trends"@en . . . . . . "engineering applications"@en . . . . . . "quality control"@en . . . . . . "accuracy enhancement"@en . . . . . . "airborne active sensors applications"@en . . . "https://ltb.itc.utwente.nl/page/792/concept/152967" . . "Case study"@en . . . . . . . . . . . . . . . . . . . . . "platforms"@en . . . . . . "3D geinformation"@en . . . . . . "generated products"@en . . . . . . "airborne passive solutions"@en . . . . . . "data accuracy assessment"@en . . . . . . "spaceborne active solutions"@en . . . . . . "timetable"@en . . . . . . "course objectives"@en . . . . . . "data processing assessment"@en . . . . . . "3D geoinformation generation"@en . . . . . . "LiDAR technology"@en . . . . . . "spaceborne active sensors"@en . . . . . . . "radar technology"@en . . . . . . . "terrestrial passive solutions"@en . . . . . . "3D geoinformation engineering applications"@en . . . . . . "active airborne"@en . . . . . . "data fusion"@en . . . . . . "passive spaceborne"@en . . . . . . . . "data integration"@en . . . . . . "aerial imaging techniques"@en . . . . . . "3D data processing"@en . . . . . . "course structure"@en . . . . . . "MLS"@en . . . . . . "3D data acquisition techniques"@en . . . . . . . . . . . . . . . . "Geospatial Information Visualiser"@en . . . . . . . . . . . . . . . "Geospatial Data Engineer"@en . . . . . . . . . . . . . . . "Remote Sensing Specialist"@en . . . . . . . . . . . . . . . "Geospatial Analyst"@en . . . . . . . . . . . . . . . "3D Geoinformation Engineer"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "M-GEO 5.0"@en . . . . . . . . . . . . . . . . . . . . . "GeoAI"@en . . . "Course"@en . "2.5" . "70.0" . "5.0" . "3.0" . "This course is meant for students who want to get into the field of geospatial data acquisition, processing, and application using state-of-the-art spaceborne, airborne, and terrestrial sensors and technologies.\nThis course provides students with significant knowledge on how to utilize active and passive imaging sensors, and laser scanning for collecting high-resolution 3D geospatial data. The main use of the 3D geoinformation obtained through this course is the creation of Digital Twins. By understanding and implementing Digital Twins, students will be able to enhance decision-making in urban planning, infrastructure maintenance, environmental conservation, and emergency response, etc.\nDuring the course, students will investigate aircraft and drone vehicles that are equipped with imaging sensors and laser scanners (LiDAR) for creating highly accurate 3D models of terrain and structures. Students will learn the benefits of the integration of 3D products from photogrammetry and laser scanning and how it will create more precise 3D geoinformation for engineering applications, spatial analysis, and 3D visualization. "@en . "3D Geoinformation Engineering"@en . "3D Geoinformation Engineering"@en . "3D Geoinformation Engineering"@en .