. . "5.0" . "140.0" . "10.0" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "4.0" . "3.0" . "[CONCEPT] Monitoring of physical and chemical atmospheric, land and ocean variables with remote sensing requires an understanding of Earth’s ecosystems. Understanding of systems can be based on expert knowledge, experimental relations or physical relations, and this understanding can be captured in a descriptive model. Models are to understand, detect, predict, and describe interactions within and between ecosystems and the atmosphere across scales that range from local to global.\n\nRemote sensing can be used for parameter input in models, but also for spatial and temporal interpolation or extrapolation. This course provides an introduction to knowledge-driven, data-driven and physical modelling, starting with appropriate model selection given a specific problem or data availability. The course therefore deals with basic concepts and boundary conditions. Much emphasis is on integration of remote sensing observations into models, and selecting optimal object / pixel / time based mapping method for a given problem "@en . "Modeling & Mapping"@en . . "Modeling & Mapping"@en . "Modeling & Mapping"@en . . "5.0" . "140.0" . "10.0" . . . . . . . . . . . . . . . . "Q2 (QRS) and preferably Q3 - Modelling and Mapping / open for second year as elective"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "4.0" . "3.0" . "[CONCEPT] The earth surface is a dynamic environment that constantly undergoes change. Various process interact at various time scales, ranging from minutes in atmospheric processes to days in land processes and even millions of years in geological processes. Monitoring of natural resources therefore deals with monitoring of a changing earth surface cover. Even when observing geological processes, the observational environment still changes by the minute. \n\nIn this course, remote sensing is applied for monitoring changes in land cover and land use, covering both system drivers (e.g., changes in land use) and response variables. Attention is given to linking the physical world with ethical and social considerations, environment and social aspects of technology, consulting different stakeholders in the management of the resources. "@en . "Impact monitoring and management"@en . . "Impact monitoring and management"@en . "Impact monitoring and management"@en . . . . . . . . . "satellite data-model integration"@en . "Modeling & Mapping: LU3"@en . . . . "MGEO 5.0 BoK"@en . . "time series"@en