. . "5.0" . "140.0" . "10.0" . . . . . "blended, F2F, online" . . . . . . . . . . . . . . . "Introduction to hazard risk resillience course, GIS data management/terrain analysis"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "3.0" . "2.0" . "The identification and assessment of natural hazards is a crucial component of disaster risk management. This course will focus on the modelling of natural hazards, with an emphasis on hydro-meteorological hazards (e.g., floods, landslides and erosion). Starting from the relevant natural phenomena and their causes, the generation of historical inventories of hazardous phenomena will be discussed. From the cloud-based generation of the hazard inventories and their interpretation, the course will expand on the main methods and tools to assess the susceptibility and hazard at different scales. The course will provide the foundation for predictive approaches with a particular focus given to statistical models of multivariate nature. The latter will combine the spatial and temporal dimensions. The use of empirical models will further investigate runout patterns to estimate areas under threat."@en . "Data driven Hazard modelling"@en . . "Data driven Hazard modelling"@en . "Data driven Hazard modelling"@en . . "5.0" . "140.0" . "10.0" . . . . . . . . . . . . . "CORE MODULE"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "4.0" . "2.0" . "Water and energy are fundamental for life on Earth, their variations, trends, and extremes are sources for drought extremes, heat waves, heavy rains, floods, and intensive storms that are increasingly threatening our society to cause havoc as the climate changes. Better observations and analysis of these phenomena will help improve our ability to understand their physical processes and to model and predict them. Earth Observation technology is a unique tool to provide a global understanding of essential water and energy variables and monitor their evolution from global to basin scales. The focus of this course is on the physical principles of how electromagnetic signals are applied to monitor these essential variables by spaceborne sensors, and learn tools and methods to collect, process, and visualize Earth observation data of surface solar radiation, evapotranspiration, precipitation, soil moisture, and terrestrial water storage. Furthermore, students will learn how to retrieve the essential water/climate variable – soil moisture from Earth observation data, applying the radiative transfer theory."@en . "Water Cyle in the anthropocene"@en . . "Water Cyle in the anthropocene"@en . "Water Cyle in the anthropocene"@en . . . . . . . . . . . . "EO for SM"@en . "Water Cyle in the anthropocene: LU4"@en . . . . . . . "Introduction to modelling"@en . "Data driven Hazard modelling: LU3"@en . . . . "MGEO 5.0 BoK"@en . . "modelling"@en