. . "2.5" . "70.0" . "5.0" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "3.0" . "This course is meant for students who want to get into the field of geospatial data acquisition, processing, and application using state-of-the-art spaceborne, airborne, and terrestrial sensors and technologies.\nThis course provides students with significant knowledge on how to utilize active and passive imaging sensors, and laser scanning for collecting high-resolution 3D geospatial data. The main use of the 3D geoinformation obtained through this course is the creation of Digital Twins. By understanding and implementing Digital Twins, students will be able to enhance decision-making in urban planning, infrastructure maintenance, environmental conservation, and emergency response, etc.\nDuring the course, students will investigate aircraft and drone vehicles that are equipped with imaging sensors and laser scanners (LiDAR) for creating highly accurate 3D models of terrain and structures. Students will learn the benefits of the integration of 3D products from photogrammetry and laser scanning and how it will create more precise 3D geoinformation for engineering applications, spatial analysis, and 3D visualization. "@en . "3D Geoinformation Engineering"@en . . "3D Geoinformation Engineering"@en . "3D Geoinformation Engineering"@en . . "2.5" . "70.0" . "5.0" . . . . . . "blended" . . . . . . . . . . . . . . . . "Foundation courses M-Geo"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "4.0" . "2.0" . "The concept of (public) participation in geospatial research has a long tradition. However, the adoption of Web 2.0 technologies facilitates the generation and sharing of and collaboration on digital content with a geospatial component, and has therefore expanded possibilities and practice. This course gives an overview of its history and new developments, on examples of successful and unsuccessful projects to identify criteria for sustainable crowdsourcing or volunteering, including issues of privacy and ethical research. It is particularly relevant for eliciting and arguing the needs, interests, and positions of any stakeholder that incorporates or directly works with the public. A main focus lies on the technologies that enable new forms of participatory sensing, and techniques to assess and improve the quality of such data. "@en . "Volunteered Geographic Information and Geo Citizen Science"@en . . "Volunteered Geographic Information and Geo Citizen Science"@en . "Volunteered Geographic Information and Geo Citizen Science"@en . . . . . . . . . "evaluate quality and representativeness of a volunteered data set"@en . . . . . . . "Assess the data processing accuracy and the quality of the generated products "@en . . . . . . . . . "Representativeness and quality of crowdsourced or volunteer data"@en . "Volunteered Geographic Information and Geo Citizen Science: LU7"@en . . . . "MGEO 5.0 BoK"@en . . "quality"@en .