This course provides an advanced understanding in the assessment of dynamic risk for multi-hazards from hydro-meteorological and geological origin (e.g. landslides, floods, debris flows). This course presents approaches to evaluate how multi-hazard risk might change over time. Multi-hazard risk assessment (MHRA) is the quantitative estimation of the spatial distribution of potential losses for an area. These relate to multiple natural hazards with different hazard interactions, with multiple event probabilities, for multiple types of elements-at-risks, and multiple potential loss components. The course first discusses the various types of hazard interactions. An overview is given of the tools available for multi-hazard assessment, stressing the importance of developing integrated physically-based multi-hazard models. One of such models, OpenLISEM Hazard, is treated in detail, and the participants will get hands-on experience in the use of this integrated physically-based multi-hazard model, and the data requirements. After discussing problems involved in analyzing static MHR, the course addressed the analysis of changing multi-hazard risk as a basis for decision-making. These changes may be related to changes in triggering or conditional factors, increasing exposure of elements at risk, and their vulnerability and capacity. Dynamic risk can be evaluated in the long term because of changes in climate, land use, population density, economy, or social conditions. Changes in risk might also be occurring in a short time frame and assessed as a basis for Early Warning and impact based forecasting, and to analyze the consequences of hazard interactions after major events.